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Abstract— Current models of human motor learning and
control typically employ continuous (or near continuous)
movement commands and sensory information. However, re-
search suggests that voluntary motor commands are issued in
discrete-time submovements. There is also reasonable support
for the hypothesis that human sensory experience is episodic
as well. These facts have motivated the development of a
learning algorithm that employs discrete-time sensory and
motor control events, S-learning. We present this algorithm
together with the results of simulated robot control. The
results show that the learning that takes place is adaptive
and is robust to a variety of conditions that many traditional
controllers are not capable of handling, including random
errors in the actuators and sensors, random transmission
time delays, hard nonlinearities, time varying system behavior,
and unknown structure of system dynamics. The performance
of S-learning suggests that it may be an appropriate high-
level control scheme for complex robotic systems, including
walking, cooperative manipulation, and humanoid robots.

Index Terms— adaptive control, machine learning, discrete-
time, temporal difference learning

I. I NTRODUCTION

When mathematically modeling human motor learning
and control, it is common to make a number of assump-
tions: 1) Sensory information and control information are
usually considered to be continuous in time. 2) Perception
and movements are often expressed in terms of fixed,
external Cartesian coordinates. 3) In many cases, velocity,
acceleration, and higher derivatives of position are explic-
itly represented in the motion planner. 4) Kinematic states
are assumed to be sensed at high resolution. While models
based on these assumptions can describe some aspects of
human movement, none of these assumptions has been
proven. In addition, these models are typically used only
to model and predict a limited class of movement ([e.g.
ballistic reaching movements [1]). In this paper, we propose
an alternative motor learning model. This model employs
as working assumptions that both motor commands and
sensory information are passed in a discrete, episodic
fashion, quantized in time.

Evidence for discrete-time motor commands, also known
as submovements, is widespread and accounts for a
large number of disparate phenomena in motor behav-

ior. Observations of slow finger movements [2], eye sac-
cades [3], tracing constant curvature paths [4], cyclical
movements [5], [6], [7], infant reaching movements [8],
ballistic movements [9], movements of recovering stroke
patients [10], [11], and movements requiring high accu-
racy [12] are all consistent with a theory of submovements.
The discrete-time nature of movement is evident not only
in movement kinematics, but also in the electromyograph
(EMG) signals of agonist and antagonist muscles [2].

Evidence for the discrete nature of sensory experiences
is more subtle. The concept was originally proposed by
William James [13] and more recently by Stroud [14].
One particularly striking phenomenon that suggests discrete
sensory experience is the wagon wheel illusion under
steady light. Due to the rapid series of photographs of
which movies are composed, it is commonly observed that
a spoked wagon wheel appears to rotate slowly backward
while rolling rapidly forward. Interestingly, the same effect
can also be observed in life (as opposed to motion pictures)
under steady light [15], suggesting a periodic sampling
mechanism in human vision. In another experiment, two
lights that blinked with a slight delay were occasionally
perceived to flash simultaneously [16], an occurrence that
was suggested to be a function of the phase relationship
with alpha (8–12 Hz) cortical rhythms [17]. Other obser-
vations that suggest discrete sensory experiences are the
sharp dependence of perceived causality on delay times and
periodicities in reaction times [18]. A more in-depth review
of the case for discrete perception is made in Ref. [19].

II. S-LEARNING

The problem of learning to interact with an unknown
environment while having no explicit model of one’s own
dynamics is particularly challenging to address because of
its generality. Yet human infants presented with the prob-
lem eventually manage to find a solution. Some previous
work in this area specific to navigation is motivated and
described in Ref. [20]. The algorithm we propose to address
this problem more generally is a reinforcement learn-
ing algorithm [21], qualitatively similar to the temporal-
difference learning algorithm known as Q-learning [22]. It
also has a strong component of sequence learning, a tool



used to model, among other things, handwriting genera-
tion [23]. In contrast to common algorithms for sequence
learning, such as Markov models and neural networks, the
approach we present does not collapse previous experiences
into a statistical compendium (see Ref. [24]). Rather, it
maintains a library of repeatedly observed patterns that is
referenced like a database. Due to the algorithm’s emphasis
on sequences, it will be referred to here asS-learning.

Like Q-learning, S-learning can create a model using
only a raw series of inputs and does not require a reward
function to be specified for each state. However, it differs
from Q-learning and other implementations of reinforce-
ment learning in that it does not require a fixed goal
state. In Q-learning, the goal or reward states must remain
constant for learning to take place. If the goal is changed,
all previous experience is rendered obselete. S-learning,
in contrast, addresses the time-varying-goal problem in
reinforcement learning by “remembering” sequences of
previous actions and sensory inputs. When a new goal is
presented, the S-learning algorithm searches past sequences
for series of actions that moved the system from its current
state to the desired state. It can utilize past experience to
reach a novel goal.

S-learning treats data categorically and has no explicit
representation of distance between the inputs. Using inputs
from the natural number line to illustrate, the number2

would not be assumed to be closer to1 than would the
number1, 000, 000; each would be interpreted as categori-
cally different than the others. (However, S-learning would
quickly learn to associate1 and2 while making small steps
along the number line.) While this hinders the performance
S-learning in one sense by disregarding useful information,
it also broadens the scope of problems S-learning can
address to those incorporating categorical data, such as
ice cream flavors, text input, emotional states, abstract
concepts, etc. In terms of human behavioral modeling, S-
learning provides a single tool that can model the learning
and control of both human movement and human cognition.

In S-learning, learning occurs by repeated observation
of sensory and control events. The block diagram in Fig.
1a describes the process in detail. Motor and sensory
events of different magnitudes are binned and treated
categorically; events falling into different categories are
initially considered to be unrelated. That is, extrapolation
and interpolation do not occur explicitly. During learning
(as in an infant), the motor control system issues a set
commands and observes the resulting sensory events. As
patterns are observed repeatedly, they are recorded and
extended. This growing library of patterns constitutes the
motor controller’s “experience base.” A key feature of this
algorithm is that it is able to “bootstrap” a partial model of
its universe, based on whatever experiences it has recorded
to date. It is not paralyzed by the fact that it hasn’t already
visited the entire state space.

In a more formal terms, consider the following defini-
tions:
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Fig. 1. a)S-learning algorithm. The S-learning agent identi-
fies its dynamics and those of its environment by randomly
generating patterns and noting repeated occurrences. It
initially observes its current state, generates a random input,
and then observes the resulting state. If it is a pattern that
it has not encountered before, it records the pattern in
memory and repeats the process. If the pattern has been
previously observed, the agent notes the observation and
then extends the pattern by generating another random
input. In this way, patterns of increasing length are recorded
as training progresses.b) The simulated rotary pointer
robot showing 10◦ position sensing bins andR and L
movement commands.

θ = {χ1, χ2, χ3, ...} (1)

Whereχ is anevent andθ is an ordered series of events.
χ can be a sensory event or a command event, a raw
data measurement or a symbol, depending on the inputs
to the S-learning algorithm.θ may be finite or infinite and
is hereafter referred to as theevent stream. It represents
the whole of the “experience” of the learning algorithm.
Patterns, denoted byρ, are finite series of events drawn
from θ:

ρj = {χj
1, χ

j
2, ..., χ

j
n} (2)



A pattern library, λ, is an unordered set of previously
observed patterns:

λ = {ρ1, ρ2, ρ3, ...} (3)

In addition, each library entryρj has a counter associated
with it, Nj , and a recency measure,φj .

The S-learning algorithm processesθ by matching its
first several elements with a pattern fromλ. The longest
possible match,ρM = {χM

1 , ..., χM
n }, is found for the first

n elements ofθ, the count,NM , associated with the library
entry forρM is incremented by one, and the corresponding
recency measure,φM is reset to zero. In addition,χn+1 is
appended toρM to form a new pattern,ρnew, that is then
added toλ.

Initially λ = {∅}. Patterns of increasing length are
“grown” as they are repeatedly observed. The storing of
actual patterns taken fromθ, as opposed to a statistical rep-
resentation of the patterns (as in a Markov model), allows
order and context-specific information to be preserved. The
gradual building of patterns is a means of limiting the
memory requirements of the algorithm. Instead of storing
a sparse N-dimensional matrix to track the occurrence of
all patterns of length N, the non-zero entries are stored
in list form. This allows the storage of long patterns with
large sets of distinct events in reasonable memory. Periodic
“forgetting” of very rarely observed patterns will further
limit the storage requirements.

S-learning can be applied to any discretized and quan-
tized stream of data. By using it to close a control loop, it
can serve as a dynamic world modeler for an autonomous
system. This scheme is depicted in Fig. 1a. The command-
generation policy shown here is an exploratory one; it
generates random commands and observes the results.
More sophisticated exploration policies are possible. Mod-
ification of S-learning’s command-generation policy to one
of explicit goal-seeking transforms it from a randomly ex-
ploring learning into an algorithm for closed-loop control.
The exploration policy can be replaced by a policy that
searches through the agent’s experience base to find the
command that is most likely to lead to a desirable state.
In this way, thoughtful selection of policy can yield highly
sophisticated agent behavior.

III. S IMULATION

Consider an implementation of S-learning in a simulated
rotary pointer robot (Fig. 1b). Possible sensory events for
the pointer robot consist of position sensing in 10◦ bins,
resulting in 36 distinct states (for convenience, numbered
1 through 36). Possible command events for the pointer
are 10◦ rotation clockwise (R) and 10◦ rotation counter-
clockwise (L).

While the rotary pointer robot is a simple simulation
that does not closely resemble the human neuromuscu-
lar system, it provides a generalized learning challenge.
Beginning with no model of the robot’s function, no
implied structure, and no connection between neighboring
sensor states poses a learning problem that can easily

be transferred to systems with more degrees of actuation
freedom, more sensors, and a greater range of actuator
outputs. The rotary pointer robot problem posed in this way
is representative of far more complex learning problems.

An example of how S-learning operates shows the sim-
plicity of the approach. One sample excerpt of an event
history resulting from random movements might consist of
3 R 4 R 5 L 4 R 5 L 4 L 3 L 2. The S-learning agent
would break the event history into short patterns,3 R 4, 4
R 5, 5 L 4, etc. When these patterns are encountered again
in subsequent excerpts of the event history, they will be
extended, producing patterns such as3 R 4 R 5, 4 R 5 L
4, and5 L 4 R 5 R 6.

A simulation of S-learning applied to the pointer robot
system was implemented in C++. Six conditions were
simulated:

Simple system.Measurement states1–36 and
command eventsR andL as described previously.

Hard stop. Same as the simple system, but with
a “hard stop” inserted at 0◦, between positions36 and
1, prohibiting continuous rotational movement. This is
an example of a hard nonlinearity in the environment,
analogous to intermittent contact in manipulation.

Sensory state scramble.Same as the simple sys-
tem, but after 5000 trials, the numerical labels for sensory
states are reshuffled in random order. This is an extreme
and discontinuous example of time variance. The system
changes radically, making all prior learning inapplicable.

Command reversal. Same as the simple sys-
tem, but after 5000 trials the commands “reverse”; an
R command producescounterclockwise motion and an
L command producesclockwise motion. This is another
example of a dramatic change in system dynamics. In this
case, an action has exactly the opposite of the intended
effect.

Random error. Same as the simple system, but
with up to 5◦ of random error added to each command
event, resulting in movements of between 5◦ and 15◦.
With measurement resolution limited to 10◦, the error will
express itself as measurement states being either skipped
or unchanged when a command is issued. The random
variations are in essence a large, cumulative source of noise
with a signal-to-noise ratio near 1.

Random delays.Same as the simple system, but
each command event has a 50% chance of being delayed
and executed at the instant thenext command is issued.
As a result, when a command is issued, zero, one, or two
command events may actually take place. Non-determinacy
in time is a feature of control across high-traffic networks,
such as the World Wide Web.

In each case, the S-learning agent generated random
command events and attempted to predict the results before
executing the command. Predictions were generated by
searching through previously observed patterns for in-
stances containing a portion of the current event history.
Patterns that provided the longest match with the event



history were selected. Among those, patterns that were
observed recently or that had been observed many times
were favored more highly. Once a pattern was selected, a
prediction was obtained by reading “what happened next”
when the situation had been encountered previously. In
each condition, the S-learning agent began with a clean
slate; that is, there were no previously observed experiences
upon which to build. As a result, lack of prior experience
made it impossible for the agent to offer a prediction in
some cases. These were counted as unsuccessful predic-
tions.

It is worth noting that the prediction tasks demon-
strated here are nontrivial. The five conditions contained
instances of hard nonlinearities, dramatic time variance,
large stochastic movement error, and nondeterministic time
delays, any one of which can impose insurmountable chal-
lenges for certain learning algorithms. However, they are
challenges that the human motor learning mechanism rou-
tinely faces and successfully overcomes without difficulty.
Taken together, they constitute something of a proving
ground for any model of motor learning purporting to
describe that of a human.

IV. RESULTS

During simulation of each of the six conditions, the
learning agent generated a database of patterns. Represen-
tative patterns observed were16 R 17 R 18 R 17 L 18 R
19 (observed 6 times after 10,000 trials),25 R 26 R 27 L
26 L 25 R 26 (observed 8 times), and22 R 23 L 22 R 23
L 22 L 21 (observed 11 times). In the case of the simple
system, a total of 2155 repeated patterns were observed,
occupying 599 kilobytes of memory. The longest patterns
observed included five movement events, a limit imposed
by the software, rather than by the inherent function of the
S-learning agent. On average, patterns contained between
3 and 4 movement events. Simulating 10,000 trials for one
condition took approximately two minutes. Given that the
simple system was learned within the first 2000 trials, only
24 seconds were required to learn the system’s dynamics
completely.

The results of the simulations are shown in Fig. 2. As
shown in the plot, the S-learning agent achieved 100%
accuracy in the simple system after 2000 trials. The S-
learning agent showed similar performance in the presence
of a hard stop. In both these conditions, the performance
of the system is deterministic, allowing correct predictions
at every time step.

Scrambling the sensory state labels changed the system
fundamentally, making the probability of encountering a
previously observed pattern small. Learning essentially
began from scratch, and the initial learning transient was
repeated after scrambling. Reversing the directions of the
commands resulted in a marked decrease in performance
initially, but the agent recovered within 4000 trials afterthat
and predicted the last 1000 trials perfectly. It is likely that
the “reversed” state took so much longer to learn than the
“scrambled label” state because in the latter the S-learning
agent’s previous experience was completely inapplicable
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Fig. 2. Simulation performance. Six different conditions
were imposed: the simple system (bold solid line), the
system with a hard stop (dotted line), the system with
scrambled sensory state labels (fine solid line), the system
with a command reversal after 5000 trials (fine dashed
line), the system with randomness in the movement am-
plitude (dashed line), and the system with a random time
delay (dash-dot line). The scrambled label condition and
the gain reversal condition represented perturbations to the
simple condition that began during the 6th thousand trials.
Prior to that, their performance curves are represented by
the simple system curve.

and rarely produced any prediction at all. In the former it
was worse than useless; it was misleading. It produced a
prediction, but an incorrect one.

The introduction of random noise into the movement
amplitude made perfect prediction impossible. The noise
amplitude was equal to the resolution of the position
measurement, 10◦. As a result, knowledge of the current
position allowed prediction of the subsequent position with
an accuracy of only 50%. With a longer event history, it
was possible to increase the accuracy, but only to a certain
extent. The learning agent began with a prediction accuracy
slightly higher than 50%, and gradually it increased to near
70%, reflecting this.

Random time delays introduced the possibility that zero,
one, or two command events might be executed at once.
With a 50% probability of delay, at any given time step
there was a 25% chance that no command would be
executed, a 25% chance that two commands would be
executed simultaneously, a 25% chance that the previous
command alone would be executed, and only a 25% chance
that the current command alone would be executed. As
a result, even once the behavior of this simple system is
learned, only a 25% success rate can be expected with
no knowledge of prior events. However, with a complete
knowledge of prior events, it was possible to infer whether



the prior command event had been executed, allowing a
theoretical prediction accuracy of 50%. The learning agent
began with prediction accuracy slightly higher than 25%,
and that accuracy climbed to just over 45% after 10,000
trials.

V. D ISCUSSION

The computational requirements of the learning agent
were modest. Although the system simulated was simple,
the time required for the S-learning algorithm to learn its
dynamics fully was less than 30 seconds and data storage
requirements were almost negligible (<1 MB). While we
anticipate that both the learning time and the storage
requirements will increase with the number of possible
sensory and command events, we do not expect to feel
the curse of dimensionality full force. By listing observed
patterns in a library, rather than tracking occurrences in
a sparse matrix of all conceivable patterns, we expect
that storage requirements will grow only modestly with
increasing dimensionality. Future research will explore this
issue in detail.

Although the pointer robot system simulated here con-
tains only a single degree of freedom for actuation and a
single sensor, its implications for modeling human motor
control are notable. The S-learning algorithm used did not
exploit any knowledge of the robot’s structure or dynamics,
or even assume continuity or order of the sensor input. De-
spite these handicaps, the algorithm successfully learneda
series of dramatic system disturbances. This demonstration
implies that S-learning could also be employed to learn
and control a much more complex system, perhaps with
the complexity of the human neuromuscular system. The
only step necessary to extend S-learning to systems with
larger numbers of degrees of freedom is to serialize the
various commands and sensor outputs into a single event
stream. Otherwise, the algorithm need not be modified.

The large number, nonlinear coupling, and redundancy
of degrees of freedom in the human skeletal system do not
suit it well to traditional control approaches. In addition,
the inherent compliance of muscles inserts an added layer
of complexity to the control problem. Attempts to create
humanoid robotics typically circumvent these difficulties
by creating hardware with more straightforward kinematics
and non-backdriveable actuators, but do so at the expense
of versatility. For instance, humans’ kinematic redundancy
allows mechanical impedance to be adapted to address the
task at hand, and muscular elasticity allows human move-
ment to respond gracefully to unexpected perturbations and
hard non-linearities in the environment. Current high-end
humanoid systems have neither of these traits.

Ironically, the high precision and mechanical impedance
that make robots more amenable to established control
approaches are also high in cost. If a robot’s learning
and control scheme can tolerate unmodeled joint backlash,
nonlinear friction, and structural elasticity, all of which
may be environment-, configuration- and load-dependent,
then far less expensive hardware can be used to meet the
functional requirements of the robot. If S-learning proves

its potential to scale to more complex systems, it may lower
the barrier to entry for research involving large degree-of-
freedom biologically-inspired robots.
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